
CHARACTERISTICS OF THE NUMERICAL SOLUTION OF THE 

HEAT-CONDUCTION EQUATION AT EARLY TIMES 

A. G. Eliseev UDC 536.24.02 

A criterion is presented for choosing time steps At and space steps Ax in an 
implicit scheme for obtaining a numerical solution of the unsteady heat-con- 
duction equation at early times. 

The problem under consideration is formulated as follows: 
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The general finite difference approximation of Eq. (I) has the form 
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where :/a<~ 0~I; 82 is the centered second difference operator, and the subscripts and 
superscripts denote distance and time, respectively. The von Neumann method for investigat- 
ing stability [I] gives the amplification factor 
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where q = kAx and r = At/Ax 2. 

By requiring that IX] 41 + O(ht) we find that the finite difference scheme is uncondi- 
tionally stable for I/2~ 0 41; i.e., all the components of the initial perturbation are 
damped out with time. A detailed proof of this statement is given in [2]. 

By introducing the notation ~ = 4r sini(q/2) we can write the real part of the amplifi- 
cation factor in the form 
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If ~ § +~, Re(X) + --(i -- 0)/0 (Fig. i). Hence, it follows that only for 0 = 1 is Re(X) > 0 
for all values of ~. If 0 < I, a value ~o can always be found such that, for ~ > Po, 
--I < Re(X)~ 0. Thus, the damping of the initial perturbation is oscillatory in character, 
and this decreases the accuracy of the calculation for early times. Equating the numerator 
of (4) to zero and performing some simple calculations, we obtain the condition for r which 
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Fig. I. Real part of amplifica- 
tion factor X as a function of ~. 

Fig. 2. Boundary-layer region for 
the heat-conduction equation. 
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Fig. 3. Dimensionless temperature u as a 
function of distance x/d(t); I, comparison 
with exact solution; i, 2, and 3, tempera- 
ture distribution over first, second, and 
third time slices, respectively, for param- 
eters not satisfying (5). At = 10 -5 , d = 
i0 -3, O = 0.7. 

ensures damping of the initial perturbation without oscillations for all frequenciesof the 
expansion of the solution in a Fourier series 
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Thus, it is clear that although the stability condition permits the choice of any relation 
between At and Ax, condition (5) imposes restrictions on r. The larger a and b2/a 2 the more 
stringent the restrictions on At for a chosen 0x. If c < 0 this also imposes further re- 
strictions on At. We note that for c = b = 0, 0 = 1/2, a = i, we obtain the relation r~ I/2 
recommended in [3]. 

A test of this criterion was performed on the solution of the heat-conduction equation 
using the scheme proposed by Paskonov [4]: 
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Condition (5) in this case is written in the form 
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where d(t) is the boundary-layer region for the heat-conduction equation (Fig. 2). 

Figure 3 shows the solution of problem (6) at early times for various At. It can be 
seen from the curves that condition (7) is essential to ensure the necessary accuracy at 
early times. 
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It should be notedthat it is particularly important to satisfy inequality (5) in s o l v -  
ing n o n l i n e a r  problems.  Thus, t he  s o l u t i o n  of  a n o n l i n e a r  h e a t - c o n d u c t i o n  problem showed 
that the iterations do not converge if inequality (5) is not satisfied, where a, b, and c 
are taken as the extreme values of the corresponding coefficients of the equation. 
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THE STRESS-DIFFUSION EFFECT IN HETEROGENEOUS LIQUID STREAMS 

O. A. Grechannyi UDC 532.529.5 

An analysis is made of the effect of the shear stresses in the average stream 
on the coefficient of molar diffusion of a passive impurity in a turbulent 
liquid stream. 

In a study of the slow motion of a specularly reflecting sphere in a heterogeneous 
stream of rarefied gas a dependence of the coefficient of dynamic friction on the tensor of 
shear stress in the stream (the stress-phoretic effect) was obtained in [i]. In this case 
the transfer processes are determined by the following tensor expression for the coefficient 
of Brownian diffusion: 

DiJ = DO (SiJ - -  ~oi/P),  (1) 

where D ~ is the Einstein coefficient of Brownian diffusion; ~ij are the coefficients of the 
reduced stress tensor; p is the hydrostatic pressure; 6ij is the Kronecker symbol; a is a 
numerical coefficient. Analogous results follow within the framework of the kinetic theory 
in an analysis of the motion of heavy impurity particles in a nonequilibrium gas [2]. 

In the present report it is shown that a similar dependence of the diffusion coefficient 
on the stress tensor in a stream also occurs in the case of the turbulent diffusion of a pas- 
sive impurity in a shear stream (the stress-diffusion effect). 

Let v(t, x; ~) be the random vector field of the velocity of a turbulent stream of in- 
compressible liquid; O(t, x; m) be the scalar field of the concentration of a passive impurity 
in it, which satisfies the transfer equation [3] 

0 0 
-- ~ (l, x; o) -- v i (t, x; o) @ (t, x; o). (2) 
Ot Ox i 

Let us examine the derivation of the equation of convective diffusion for ~ on the as- 
sumption of the statistical independence of the initial distribution ~(0, x; m) = @0(x; ~) 
from the velocity fluctuations in the in the turbulent stream and in the approximation of a 
Gaussian velocity field. We take v i = vi + v' and vi' = 0 and introduce the designation 

f~ (t; o) = - -  U-~ (t)-~x~ V; (t' x; (o) U (t)' U (t) = exp [ - -  t O-~- vf (x) ] (3) 
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